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Abstract

The study compares three distinct estimation methods: Bayesian Estimation,
Linear Regression Estimation, and Point-Based Estimation, to assess their
performance across varying conditions. Bayesian Estimation is noted for its
remarkable stability in B estimates across diverse values and sample sizes,
with significant improvement in the accuracy of & estimates as the sample
size increases. Conversely, Linear Regression Estimation demonstrates less
consistency, particularly in the case of higher true B values, with less
definitive trends in Mean Squared Error (MSE). Point-Based Estimation
excels in achieving strong convergence towards the true values with
increasing sample sizes, resulting in notably reduced MSE and highlighting
its high precision. This analysis illuminates the relative strengths and
weaknesses of each method, suggesting that the choice of estimation
technique should be tailored to specific requirements such as desired accuracy
and available data size. For applications demanding high precision, it is
evident that larger sample sizes enhance the accuracy of estimates across all
tested models. This study provides valuable insights into the selection of
estimation methods suitable for various statistical modelling scenarios.
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1. Introduction:
Estimation methods are fundamental to statistical analysis, enabling
researchers and analysts to infer population parameters based on sample data.
This paper explores three primary estimation techniques: Bayesian
Estimation, Linear Regression Estimation, and Point-Based Estimation. Each
method offers unique advantages and is suited to different types of data and
analytical goals. Bayesian Estimation operates on the principle of updating
the probability of a hypothesis as more evidence becomes available. (Smith
and Gelfand, 1992; Gelman et al., 1995) report that it integrates prior
knowledge with new data, providing a robust framework for making
statistical inferences. Moreover, (Link and Barker, 2010) (Griffiths and
Lickley, 2007) say that Bayesian methods have been extensively applied
across various fields, including ecological modelling and economic
forecasting. However, (Montgomery, Peck, and Vining, 2012) claim that
Linear Regression Estimation is used to model the relationship between a
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dependent variable and one or more independent variables. It is one of the
most widely used statistical techniques, favoured for its simplicity and
interpretability. Linear regression can be employed in everything from
predicting real estate prices (Zillow, 2018) to analysing consumer behaviour
(Schwarz and Clore, 1983). Point-Based Estimation focuses on deriving
estimates from data points directly, often using methods like the Method of
Moments or Maximum Likelihood Estimation (MLE). This approach is
particularly valued for its efficiency and flexibility in handling complex
distributions (McCullagh and Nelder, 1989; Pawitan, 2001). Kundu and
Ragab (2005) discuss estimation methods for the Weibull distribution,
comparing various techniques. (Mazucheli, Menezes, and Dey, 2019) discuss
the positive bias in maximum likelihood estimators of Weibull parameters in
small samples and proposes corrections to address this bias. The application
of these methods varies based on the complexity of the data and the specific
requirements of the study. For example, (Berger, 1985) find that Bayesian
Estimation is particularly useful when prior knowledge is available and can
be quantitatively incorporated into the model. On the other hand, (Freedman,
2009) prefer the Linear Regression for its ease of use and general applicability
to predictive modelling scenarios. Lastly, (Efron and Tibshirani, 1993) often
select the Point-Based Estimation for its straightforward application to large
datasets, where computational simplicity is a priority. This paper aims to
delineate the conditions under which each method excels and its limitations,
providing a comparative analysis that aids in selecting the appropriate method
based on the research context. The ultimate goal is to enhance the accuracy
and efficacy of statistical modelling by choosing the most suitable estimation
technique for the task at hand.

2. Bayesian Estimation
Bayesian estimation for the shape (f) and scale (&) parameters of a
Weibull distribution typically involves specifying prior distributions
for the parameters and then updating these priors using the likelihood
of observed data. The posterior distributions of the parameters are
derived through Bayes' theorem. Here are the key equations and

components used in this process:
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Likelihood Distributions:
The likelihood of observing data x4, x,, -+, x,, given parameters
and & for a Weibull distribution is given by:

L8 =TT, A(2) e (- (%)) 1)

For prior distribution, suppose we use gamma priors for both § and §:
p(B) = p~te 8P

p(5) = §as-1 e—b56

These expressions omit the normalizing constants for simplicity.
The posterior distributions for £ and § is proportional to the product
of the likelihood and the priors, from equation (1).

P(B,8]x) o< L(B, 8|x) x P(B) X p(6)
Estimation:
Estimates for § and § can be derived using numerical techniques like
Markov Chain Monte Carlo (MCMC) to sample from the posterior
distribution.
These simplified equations still represent the Bayesian framework
accurately, focusing on how the prior beliefs are updated with data
through the likelihood function to form the posterior beliefs about the
parameters.

3. Linear Regression Estimation:
Given the Weibull cumulative distribution function (CDF):
F=1-e)
Taking the natural logarithm two times to equation (2),
log(—log(1 — F(x))) = Blogx — Blogé
Where y = log(—log(1 — F(x))) and x = log(x), the model can be
rewritten as:

(2)

y = px —plogé
Linear Regression:
Using the transformed variables, fit a simple linear regression model:
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y=bx+a
Where b is the estimated slope corresponding to the shape parameter
p and a is the estimated intercept, which represents—f log . From the
regression coefficients:

A

f=b and §=e %P
Fit the linear regression using the transformed variables:
(i) Transform the observed x data into log(x) for the regression
independent variable.
(i) Compute y values using the double-log transformation of the CCDF.
Parameter Estimation:
The linear regression results provide:
e The shape parameter £ is estimated directly as the slope b.
o The scale parameter ¢ is estimated using the intercept a and the slope

b through the relationship § = e~%/ B
4. Point Estimation:
Point estimation for the shape (f) and scale (d) parameters of the Weibull
distribution often involves using Maximum Likelihood Estimation (MLE),
which is a popular method due to its statistical properties like consistency and
efficiency.
Using equation (1) of the likelihood function, the natural logarithm is taken:

log L(B,8]x) = XIy [logﬁ —logd + (F - 1) logx; — (XE)B]

3)
To find the estimates for f and J, take the partial derivatives of the log-
likelihood function (3) with respect to f and o, set them to zero, and solve
for the parameters.

a 1 i B i
%logL(,B,(Slx) =3, [E + logx; —logd — (%) log%]
(4)
and
0 _yn [_B L p ()
Zlog L8610 = i, [-L+ 5 (2) & )
Equations (4) and (5) are typically non-linear and require numerical methods

to solve.
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Newton-Raphson method is used to solve systems of non-linear equations. It
uses an iterative approach starting from initial guesses for £ and 0.

5. Tables:
Bayesian Estimation:

Table 1. B =25 6 =40
g MSE ) MSE N
2.52 0.0004 39.5 0.25 20,000
2.52 4.0x 107* 39.6 0.24 45,000
2.52 0.0004 39.8 0.04 60,000
Table 2. B =41 6 =60
It MSE ) MSE N
4.1 1.0 x 107* 59.5 0.25 20,000
4.002 4.0x 107° 59.9 0.01 45,000
4.05 0.0025 59.5 0.25 60,000

Linear Regression Estimation:

Table 3. B =25 6 =40
B MSE 5 MSE N
2.475 0.000608 39.885 0.0131 20,000
2.524 0.000568 39.944 | 0.00311 45,000
2.475 0.000626 39.940 | 0.00363 60,000
Table 4. B =41 § =60
B MSE 5 MSE N
3.943 0.00325 60.073 0.0054 20,000
3.932 0.00465 59.978 | 0.000493 45,000
3.983 0.000280 60.030 | 0.000912 60,000

Point-Based Estimation:

Tabel 5. B =25 6 =40
ﬁ MSE s MSE N
2.484 0.000245 39.840 0.0256 20,000
2.5040 | 1.63x 107> | 39.9713 | 0.00082 45,000
2.5008 | 7.05x 1077 | 39.9410 0.0035 60,000
16
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Table 6. B =41 5 =60
F; MSE 5 MSE N
3.9978 | 5.04 x 107 | 59.9872 | 0.000165 | 20,000
40017 | 2.89x107° | 60.0454 | 0.0021 45,000
3.9986 | 1.95x107° | 60.1417 | 0.0201 60,000

6. Analyses of the result:

Analysing the tables provided for Bayesian Estimation, Linear
Regression Estimation, and Point-Based Estimation, needs to consider
several aspects such as the bias of the estimators (£ and &), the mean
squared error (MSE), and the influence of sample size (N). We
analyse each type of estimation and parameter separately, focusing on
trends and deviations as the sample size increases.

Bayesian Estimation Analysis

For B=2.5, 3 =40:

« Estimates (8 and 8) remain fairly consistent across different sample
sizes, with
f consistently around 2.52 and § increasing slightly from 39.5 to 39.8.

« MSE for § remains constant at 0.0004, indicating stable variance of
the estimate across sample sizes.

« MSE for & decreases significantly from 0.25 to 0.04, suggesting that
increasing the sample size improves the accuracy of § estimates.
For=4.1, 6=060:

« Estimates (f) range from 4.1 to 4.05, and & from 59.5 to 59.9.

« MSE for § shows variation, from a low of 4.0x 107® to a higher
0.0025, not showing a consistent trend with increasing N.

e MSE for § decreases sharply from 0.25 to 0.01, indicating improved
accuracy with larger sample sizes.

Linear Regression Estimation Analysis:
For =25, 06=40:
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« Estimates (f) are consistent around 2.475 to 2.524, showing slight
fluctuations.

« Estimates (§) are consistently close to 40, with minor variations.

« MSE for both B and & shows little variation, though there's a slight
trend towards lower MSE with increasing sample sizes.
ForB=4.1, 6=60:

« Estimates (f) show some inconsistency, ranging from 3.943 to 3.983.

« Estimates (8) are around 60 but with noticeable deviations.

« MSE for f significantly decreases with sample size, particularly for
8 which starts at 0.0054 and drops to 0.000912.
Point-Based Estimation Analysis:
ForB=2.5, &=40:

« Estimates () converge towards the true value of 2.5 as sample size
increases.

« Estimates (8) are very close to 40, improving slightly with larger N.

e MSE for both parameters shows substantial reduction as N
increases, indicating improved estimation precision.
For=4.1, 6=060:

« Estimates (f) are very close to 4.1, showing excellent consistency.

« Estimates () vary slightly around 60 but tend to deviate more with
larger N.

« MSE for both parameters decreases with N, especially MSE for
which becomes extremely low, indicating very precise estimates.

7. Conclusion and Overall Analysis

o Bayesian Estimation tends to be very stable for  estimates across
different values and sample sizes. However, MSE for § improves
significantly as N increases.

o Linear Regression Estimation shows less consistency in the estimates,
particularly for  when true B is higher. MSE trends are not as clear-
cut as in Bayesian estimation.
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e Point-Based Estimation demonstrates strong convergence towards
true values as N increases, with MSE reducing notably, indicating
high precision.

Each estimation technique shows its strengths and limitations, and the
choice between them may depend on specific needs such as the
accuracy required and the size of data available. For more precise
applications, increasing the sample size clearly benefits the accuracy
of estimates in all models.
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Appendix:
Prior Distribution:

P(B,61x)

<[] )ﬁ R OYORCERDCEREe

i=1 i
Bayesian Calculation program:

import pymc3 as pm

import numpy as np

import matplotlib.pyplot as plt

# Data: Replace this with your actual data
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data = np.array([5, 10, 15, 20, 25, 30, 35, 40, 45, 50])

# Bayesian model setup

with pm.Model() as model:
# Priors for unknown model parameters
alpha = pm.Gamma('alpha', alpha=1, beta=0.1) # Shape parameter
beta = pm.Gamma('beta’, alpha=1, beta=0.1) # Scale parameter
# Likelihood (sampling distribution) of observations
Y obs =pm.Weibull('Y_obs', alpha=alpha, beta=beta, observed=data)
# MCMC sampling
trace = pm.sample(5000, return_inferencedata=False)

# Posterior analysis

pm.plot_trace(trace)

plt.show()

# Summary of the posterior

summary = pm.summary/(trace)

print(summary)
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